General Certificate of Education June 2006 Advanced Subsidiary Examination

# ASSESSMENT and QUALIFICATIONS ALLIANCE

## MATHEMATICS Unit Pure Core 2

MPC2

Monday 22 May 2006 9.00 am to 10.30 am

#### For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

#### **Instructions**

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

#### Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

#### Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P85477/Jun06/MPC2 6/6/6/ MPC2

### Answer all questions.

1 The diagram shows a sector of a circle of radius 5 cm and angle  $\theta$  radians.



The area of the sector is 8.1 cm<sup>2</sup>.

(a) Show that  $\theta = 0.648$ .

(2 marks)

(b) Find the perimeter of the sector.

(3 marks)

2 The diagram shows a triangle ABC.



The lengths of AC and BC are 4.8 cm and 12 cm respectively.

The size of the angle BAC is  $100^{\circ}$ .

(a) Show that angle  $ABC = 23.2^{\circ}$ , correct to the nearest  $0.1^{\circ}$ .

(3 marks)

(b) Calculate the area of triangle ABC, giving your answer in cm<sup>2</sup> to three significant figures. (3 marks)

- 3 The first term of an arithmetic series is 1. The common difference of the series is 6.
  - (a) Find the tenth term of the series.

(2 marks)

- (b) The sum of the first n terms of the series is 7400.
  - (i) Show that  $3n^2 2n 7400 = 0$ .

(3 marks)

(ii) Find the value of n.

(2 marks)

4 (a) The expression  $(1-2x)^4$  can be written in the form

$$1 + px + qx^2 - 32x^3 + 16x^4$$

By using the binomial expansion, or otherwise, find the values of the integers p and q.

(3 marks)

- (b) Find the coefficient of x in the expansion of  $(2+x)^9$ . (2 marks)
- (c) Find the coefficient of x in the expansion of  $(1-2x)^4(2+x)^9$ . (3 marks)
- 5 (a) Given that

$$\log_a x = 2\log_a 6 - \log_a 3$$

show that x = 12.

(3 marks)

(b) Given that

$$\log_a y + \log_a 5 = 7$$

express y in terms of a, giving your answer in a form not involving logarithms.

(3 marks)

**6** The diagram shows a sketch of the curve with equation  $y = 27 - 3^x$ .



The curve  $y = 27 - 3^x$  intersects the y-axis at the point A and the x-axis at the point B.

(a) (i) Find the y-coordinate of point A.

(2 marks)

(ii) Verify that the x-coordinate of point B is 3.

(1 mark)

- (b) The region, R, bounded by the curve  $y = 27 3^x$  and the coordinate axes is shaded. Use the trapezium rule with four ordinates (three strips) to find an approximate value for the area of R. (4 marks)
- (c) (i) Use logarithms to solve the equation  $3^x = 13$ , giving your answer to four decimal places. (3 marks)
  - (ii) The line y = k intersects the curve  $y = 27 3^x$  at the point where  $3^x = 13$ . Find the value of k.
- (d) (i) Describe the single geometrical transformation by which the curve with equation  $y = -3^x$  can be obtained **from** the curve  $y = 27 3^x$ . (2 marks)
  - (ii) Sketch the curve  $y = -3^x$ . (2 marks)

7 At the point (x, y), where x > 0, the gradient of a curve is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7$$

- (a) (i) Verify that  $\frac{dy}{dx} = 0$  when x = 4. (1 mark)
  - (ii) Write  $\frac{16}{x^2}$  in the form  $16x^k$ , where k is an integer. (1 mark)
  - (iii) Find  $\frac{d^2y}{dx^2}$ . (3 marks)
  - (iv) Hence determine whether the point where x = 4 is a maximum or a minimum, giving a reason for your answer. (2 marks)
- (b) The point P(1, 8) lies on the curve.
  - (i) Show that the gradient of the curve at the point P is 12. (1 mark)
  - (ii) Find an equation of the normal to the curve at P. (3 marks)
- (c) (i) Find  $\int (3x^{\frac{1}{2}} + \frac{16}{x^2} 7) dx$ . (3 marks)
  - (ii) Hence find the equation of the curve which passes through the point P(1,8).
- 8 (a) Describe the single geometrical transformation by which the curve with equation  $y = \tan \frac{1}{2}x$  can be obtained from the curve  $y = \tan x$ . (2 marks)
  - (b) Solve the equation  $\tan \frac{1}{2}x = 3$  in the interval  $0 < x < 4\pi$ , giving your answers in radians to three significant figures. (4 marks)
  - (c) Solve the equation

$$\cos \theta (\sin \theta - 3\cos \theta) = 0$$

in the interval  $0 < \theta < 2\pi$ , giving your answers in radians to three significant figures. (5 marks)

#### END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page